PROGRESSI E NUOVE FRONTIERE IN GASTROENTEROLOGIA ED ENDOSCOPIA DIGESTIVA Belluno, 15-16 giugno 2023

MICROBIOTA E DISBIOSI

Cesare EFRATI

Responsabile UOS di malattie infiammatorie croniche intestinali

Ospedale Israelitico

- According to current estimates the human body harbors around 3.8 x 10¹³ microorganisms, which is of the same order as the number of human cells
- Most of these microorganisms are bacteria, which outnumber eukaryotes (e.g. fungi) and archaea by 2–3 order of magnitude, and reside primarily in the gastrointestinal (GI) tract.
- They form a complex and diverse community, termed as bacterial gut microbiota (hereinafter simply referred to as gut microbiota), which is composed of more than 1000 different bacterial species, with more than 90% of the them belonging to two major phyla, the Firmicutes and Bacteroidetes.
- Less abundant, but still dominant gut phyla are Actinobacteria, Proteobacteria and Verrucomicrobia

Bacterial concentrations in the stomach and upper small intestine are considerably lower ($\sim 10^3 - 10^4$ organisms per ml of luminal contents) than in the ileum, and especially colon ($\sim 10^8$ and 10^{11} bacteria/ml, respectively) (Sender et al., 2016). Not only the bacterial density, but also the relative abundance of distinct bacteria vary between the different segments of GI tract, due to differences in biochemical and physiological factors shaping its composition, such as pH, oxygen, motility or bile acid Over the past decades, it has been increasingly recognized that **gut microbiota** has a crucial role in the regulation of host physiology.

It is involved, among others, in glucose and **energy homeostasis**, in the education of the **immune system** and modulation of **GI sensory and motor functions**.

Not surprisingly, alterations in gut microbiota (termed as dysbiosis) may contribute to the development of numerous diseases, including **irritable bowel syndrome, endocrine, cardiovascular, autoimmune and even neuropsychiatric disorders**

Manipulation of gut microbiota with dietary interventions or fecal microbiota transplantation (FMT), therefore, may provide an attractive new way to improve health and prevent disease

Gut Microbiota Strains

Stomach 10¹ - 10³ CFU/ml Lactobacillus, Streptococcus, Staphylococcus, Enterobacteriaceae

Duodenum 10¹ - 10³ CFU/ml Lactobacillus, Streptococcus, Staphylococcus, Enterobacteriaceae

> Jejunum & Ileum 10⁴ - 10⁷ CFU/ml Bifidobacterium, Bacterioids, Lactobacillus, Streptococcus, Enterobacteriaceae

Colon 10¹⁰ - 10¹¹ CFU/ml Bifidobacterium, Bacterioids, Eubacterium, Colostridium, Peptostreptocossus, Fusobacterium, Lactobacillus, Streptococcus, Enterobacteriaceae

Dysbiosis of Gut Microbiota

Gut-Brain Axis: Stress, Anxiety, Depression, IBS, Schizophrenia, Cognitive Decline, Autism

Gut-Brain Endocrine Axis: Regulatory, Metabolic, Behevioral and Hormonal Disorders

> Gut-Heart Axis: Cardiovascular Diseases, Atherosclerosis, Thrombotic events, Hypertension

> > Gut-Lung Axis: Chronic Obstructive Pulmonary Disease

> > > Gut-Liver Axis: Liver Inflammations, Hepatocellular Carcinoma, Non-Alcoholic Fatty Liver Gut-Pancrease Axis: Diabetes, Pancrease cell Inflammation

Gut-Bone Axis: Bone Demineralization, Osteoporosis

Gut-Muscle Axis: Muscle Impairment, Frailty, Sarcopenia

Gut-Skin Axis: Acne, Psoriasis, Atopic Dermatitis, Wrinkles, Aging

Gut-Reproductive Axis:

Infertility, Ovarian Dysfunction, Ovarian Cancer, Postmenopausal Osteoporosis

Gut-Kidney Axis:

Chronic Kidney Disease, Acute Kidney Injury/Inflammation, Nephrolithiasis, Nephropathy

Gut-Bladder Axis: Urinary Tract Infection, Overactive/Painfull Bladder

Review > EBioMedicine. 2023 Apr;90:104527. doi: 10.1016/j.ebiom.2023.104527.

Epub 2023 Mar 22.

Gut microbiota and its metabolites in depression: from pathogenesis to treatment

Lanxiang Liu¹, Haiyang Wang², Xueyi Chen³, Yangdong Zhang⁴, Hanping Zhang⁴, Peng Xie⁵ Affiliations + expand PMID: 36963238 PMCID: PMC10051028 DOI: 10.1016/j.ebiom.2023.104527

Free PMC article

Abstract

Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.

Keywords: Depression; Gut microbiota; Metabolites; Microbial-targeted therapeutics; Pathogenesis.

Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.

The association between dysbiosis and central pathological changes during the development of depression. CNS, Central nervous system.

Review > Front Cell Infect Microbiol. 2023 Apr 25;13:1147687. doi: 10.3389/fcimb.2023.1147687.

eCollection 2023.

Gut microbiota and cardiac arrhythmia

Hongxuan Fan ¹, Xuchang Liu ², Zhaoyu Ren ¹, Xiaoning Fei ³, Jing Luo ¹, Xinyu Yang ¹, Yaya Xue ¹, Fenfang Zhang ⁴, Bin Liang ¹

Affiliations + expand PMID: 37180433 PMCID: PMC10167053 DOI: 10.3389/fcimb.2023.1147687 Free PMC article

Abstract

One of the most prevalent cardiac diseases is cardiac arrhythmia, however the underlying causes are not entirely understood. There is a lot of proof that gut microbiota (GM) and its metabolites have a significant impact on cardiovascular health. In recent decades, intricate impacts of GM on cardiac arrythmia have been identified as prospective approaches for its prevention, development, treatment, and prognosis. In this review, we discuss about how GM and its metabolites might impact cardiac arrhythmia through a variety of mechanisms. We proposed to explore the relationship between the metabolites produced by GM dysbiosis including short-chain fatty acids(SCFA), Indoxyl sulfate(IS), trimethylamine N-oxide(TMAO), lipopolysaccharides(LPS), phenylacetylglutamine(PAGIn), bile acids(BA), and the currently recognized mechanisms of cardiac arrhythmias including structural remodeling, electrophysiological remodeling, abnormal nervous system regulation and other disease associated with cardiac arrythmia, detailing the processes involving immune regulation, inflammation, and different types of programmed cell death etc., which presents a key aspect of the microbial-host cross-talk. In addition, how GM and its metabolites differ and change in atrial arrhythmias and ventricular arrhythmias populations compared with healthy people are also summarized. Then we introduced potential therapeutic strategies including probiotics and prebiotics, fecal microbiota transplantation (FMT) and immunomodulator etc. In conclusion, the GM has a significant impact on cardiac arrhythmia through a variety of mechanisms, offering a wide range of possible treatment options. The discovery of therapeutic interventions that reduce the risk of cardiac arrhythmia by altering GM and metabolites is a real challenge that lies ahead.

Keywords: GM; cardiac arrhythmia; mechanism; metabolites; review.

GUT MICROBIOTA AND CARDIAC ARRHYTHMIA

There is a lot of proof that gut microbiota (GM) and its metabolites have a significant impact on cardiovascular health. In recent decades, intricate impacts of GM on cardiac arrythmia have been identified as prospective approaches for its prevention, development, treatment, and prognosis. In this review, we discuss:

- explore the <u>relationship</u> between the metabolites produced by GM dysbiosis including short-chain fatty acids(SCFA), Indoxyl sulfate(IS), trimethylamine N-oxide(TMAO), lipopolysaccharides(LPS), phenylacetylglutamine(PAGIn), bile acids(BA) and the currently recognized mechanisms of cardiac arrhythmias including structural remodeling, electrophysiological remodeling, abnormal nervous system regulation
- how GM and its metabolites differ and change in atrial arrhythmias and ventricular arrhythmias populations compared with healthy people
- introduce potential therapeutic strategies including probiotics and prebiotics, fecal microbiota transplantation (FMT) and immunomodulator

PMC full text:

Front Cell Infect Microbiol. 2023; 13: 1147687.

Published online 2023 Apr 25. doi: 10.3389/fcimb.2023.1147687

Copyright/License <u>Request permission to reuse</u>

Demonstrates the mechanism by that gut microbiota and metabolites cause arrhythmia.

Front Cell Infect Microbiol

Review > Nat Rev Nephrol. 2023 Mar;19(3):153-167. doi: 10.1038/s41581-022-00654-0. Epub 2023 Jan 11.

The gut microbiome and hypertension

Joanne A O'Donnell # 1, Tenghao Zheng # 1, Guillaume Meric 2, Francine Z Marques 3 4

Affiliations + expand PMID: 36631562 DOI: 10.1038/s41581-022-00654-0

Abstract

A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiomeassociated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.

THE GUT MICROBIOME AND HYPERTENSION

A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure.

The gut microbiome can regulate blood pressure through several mechanisms,

Microbiota-derived metabolites are either <u>beneficial</u> (for example, short-chain fatty acids and indole-3-lactic acid) <u>or detrimental</u> (for example, trimethylamine N-oxide), can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation.

Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction.

These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the <u>renin-angiotensin-aldosterone system</u>, <u>the autonomic nervous system</u>, and <u>the immune system</u>.

Is the Gut Microbiome Implicated in the Excess Risk of Hypertension Associated with Obstructive Sleep Apnea? A Contemporary Review

Sanah S Munir ¹, Fatima H Sert Kuniyoshi ¹ ², Prachi Singh ³, Naima Covassin ¹ Affiliations + expand PMID: 37107242 PMCID: PMC10135363 DOI: 10.3390/antiox12040866 Free PMC article

Abstract

Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder and an established risk factor for cardiovascular diseases, including hypertension. The pathogenesis of elevated blood pressure (BP) in OSA is multifactorial, including sympathetic overdrive, vascular aberrations, oxidative stress, inflammation, and metabolic dysregulation. Among the mechanisms potentially involved in OSA-induced hypertension, the role of the gut microbiome is gaining increasing attention. Perturbations in the diversity, composition, and function of the gut microbiota have been causally linked to numerous disorders, and robust evidence has identified gut dysbiosis as a determinant of BP elevation in various populations. In this brief review, we summarize the current body of literature on the implications of altered gut microbiota for hypertension risk in OSA. Data from both preclinical models of OSA and patient populations are presented, and potential mechanistic pathways are highlighted, along with therapeutic considerations. Available evidence suggests that gut dysbiosis may promote the development of hypertension in OSA and may thus be a target for interventions aimed at attenuating the adverse consequences of OSA in relation to cardiovascular risk.

Keywords: cardiovascular disease; gut dysbiosis; gut microbiome; hypertension; hypoxia; obstructive sleep apnea; short-chain fatty acids; sleep fragmentation.

FULL TEXT LINKS

PAGE NAVIGATION

Title & authors

Abstract

Conflict of interest statement

Figures

Similar articles

Figure 1 Pathophysiology of hypertension in obstructive sleep apnea. HPA—hypothalamic pituitary–adrenal; RAS—renin–angiotensin system; SNS—sympathetic nervous system.

Figure 2 Proposed pathway through which perturbations in the gut microbiome may cause hypertension via altered signaling metabolites. LPS—lipopolysaccharide; RAS—renin–angiotensin system; SCFA—short-chain fatty acids; SNS—sympathetic nervous system; TMAO—trimethylamine N-oxide.

Figure 3 Schematic highlighting the interplay between obstructive sleep apnea and gut microbiome in altering metabolite signaling and facilitating the development of hypertension. F/B—Firmicutes-to-Bacteroidetes ratio

Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain

Zoltán S Zádori ¹, Kornél Király ², Mahmoud Al-Khrasani ², Klára Gyires ²

Affiliations + expand PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327 Free article

Abstract

The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.

Keywords: Microbiota; Neuropathic pain; Nonsteroidal anti-inflammatory drugs (NSAIDs); Opioids; Rheumatoid arthritis; Spondyloarthritis.

INTERACTIONS BETWEEN NSAIDS, OPIOIDS AND THE GUT MICROBIOTA - FUTURE PERSPECTIVES IN THE MANAGEMENT OF INFLAMMATION AND PAIN

Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that **have been shown to alter microbiota composition** in both animals and humans.

UNDERLYING MECHANISMS TO NSAID- AND OPIOID-INDUCED DYSBIOSIS:

- Mucosal inflammation
- changes in intestinal motility
- luminal pH and bile acid metabolism
- direct drug-induced inhibitory effect on bacterial growth

In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D).

- 1. provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids.
- 2. review the available data on the possible underlying mechanisms of dysbiosis.
- 3. review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D,

We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use.

In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.

NSAID-induced dysbiosis has been investigated primarily in the context of gut damage (enteropathy) whereas opioid-induced dysbiosis in the development of opioid analgesic tolerance and opioid-induced <u>sepsi</u>

The connection between drugs and intestinal bacteria is bidirectional. That is, not only drugs shape the composition of gut microbiota, but also dysbiosis can change the pharmacokinetics of drugs. Opioid-induced dysbiosis has been shown to decrease the enterohepatic recirculation of morphine, which lowered its bioavailability and reduced gradually its efficacy as an analgesic agent. Likewise, gut dysbiosis after <u>antibiotic</u> treatment caused significant alterations in the metabolism of indomethacin and decreased its half-life, which reduced its inhibitory effect on cyclooxygenase enzymes

diclofenac	Wistar rat	10 mg/kg, 1 to 4 times, 12 h apart	24 and 48 h	ileum	个 Gram— negatives*	<u>Reuter et</u> al., 1997
	Wistar rat (40-wk old)	4 mg/kg, twice a day for 2 wk	2 wk	ileum	 ↑ Proteoba cteria, Bacte roidetes ↓ Firmicute s, Lactobacil lus 	<u>Colucci et</u> <u>al., 2018</u>

	Wistar rat	100 mg/kg, 1 to 4 24 times, 12 h apart 48	4 and 3 h	ileum	no effect	<u>Reuter et al., 1997</u>	
acetylsalicylic acid	C57BL/6 mouse (AOM+DSS- treated), or Apc ^{Min/+} mouse	mouse 400 or 1200 mg/L, SS- for 80 d /C57BL/6/ 80 or 84 or or 84 d /Apc ^{Min/+} / nouse		 ↑ Lactobacillus (L. reuteri, L. gasseri, L. johnsonii), Bifidobacterium (B. pseudolongum, B. breve, B. animalis), Faecalibacterium rodentium ↓ Alistipes finegoldii and Bacteroides fragilis (high-dose acetylsalicylic acid) 		<u>Zhao et al., 2020</u>	
ACCENTISALICUTICO 10 mg Via oral 30 comprimidos MICRANICO SUNCES NO COMPANY NO COMPANY N	Sprague-Dawley rat	10.4 mg/kg once a day for 2 wk	5 d	feces	 ↑ Muribaculaceae (S24- 7), Cyanobacteria, Melainabacteria ↓ Lachnospiraceae, Coriobacteriia, Eubacteriaceae, Streptococcaceae 		

naproxen	Wistar rat	10 mg/kg twice a day for 4 d, or 20 mg/kg for 2 d	48 and 96 h	jejunum	 ↑ Bacteroidaceae, Enterococ caceae, Porphyromonadacea e, Enterobacteriaceae ↓ Lachnospiraceae 	<u>Blackler et al.,</u> 2015
	rat	20 mg/kg, twice a day for 4 d	96 h	cecum	Proteobacteria ↑	<u>Syer et al., 2015</u>
celecoxib	Apc ^{Min/+} mouse	1000 ppm for 10 wk	10 wk	ileum and feces	 ↑ Coriobacteriaceae (ileum and feces) ↓ Lactobacillaceae (ileum), B ifidobacteriaceae (feces), 	<u>Montrose et al.,</u> 2 <u>2016</u>
ibuprofen	C57BL/6 mouse	50 mg/kg, once a day for 1 week	1 wk	cecum	\uparrow Bacteroidetes, α,β- Proteobacteria, Verrucomicro bia \downarrow Firmicutes, δ,γ- Proteobacteria, Deferribacter	<u>Lu et al., 2018</u>

various NSAIDs (acetylsalicylic acid, ketorolac, naproxen)

human (155 commu-nity residents with ND (drug was used ND feces **ibuprofen, celecoxib**, age of \geq 18, using within past 30 d) different medications)

↑ Acidaminococcaceae, Desulfovibrionac eae, Enterococcaceae, Erysipelotrichaceae (in NSAID users vs non-users) *↑Acidaminococcaceae, Enterobacteriacea* e, Propionibacteriaceae, Pseudomonadace ae, Puniceicoccaceae, Rikenellaceae (in ibuprofen users) ↑Acidaminococcaceae, Enterobacteriacea Rogers & Aronoff, *e* (in celecoxib users) 2016 \uparrow *Alistipes* (in ketorolac users) changes in Prevotella, Bacteroides, Ruminococcace ae, Barnesiella (in acetylsalicylic acid users) changes in Enterobacteriaceae, Bacteroides, Alistip es (in naproxen users)

One of the most consistent observations is the expansion of Gramnegative bacteria in response to NSAID treatment. This is mainly due to the enrichment of the phyla <u>Bacteroidetes</u> and <u>Proteobacteria</u>,

he NSAID-induced overgrowth of *Bacteroides* (or the corresponding higher taxonomic levels *Bacteroidaceae*, *Bacteroidales* or *Bacteroidetes*), in both absolute and relative terms, has been confirmed by several groups, using either the same indomethacin or other drugs, such as diclofenac or naproxen

In our recent study, genera belonging to the *Gammaproteobacteria* (*Pantoea*, *Serratia*, *Escherichia-Shigella*, *Enterobacter*, *Rodentibacter*) and *Parasutterella* (a member of *Betaproteobacteria*) increased rapidly after indomethacin treatment,

shutterstock.com · 2214303559

Review > Heliyon. 2023 Mar;9(3):e13801. doi: 10.1016/j.heliyon.2023.e13801. Epub 2023 Feb 17.

Decoding the bidirectional relationship between gut microbiota and COVID-19

Tanya Ralli ¹, Zoya Saifi ¹, Anjali Rathee ², Vidhu Aeri ³, Kanchan Kohli ¹ ⁴

Affiliations + expand PMID: 36811017 PMCID: PMC9936796 DOI: 10.1016/j.heliyon.2023.e13801 Free PMC article

Abstract

From late 2019, whole world has been facing COVID-19 pandemic which is caused by SARS-CoV-2 virus. This virus primarily attacks the respiratory tract and enter host cell by binding with angiotensin 2 converting enzyme receptors present on alveoli of the lungs. Despite its binding in the lungs, many patients have reported gastrointestinal symptoms and indeed, RNA of the virus have been found in faecal sample of patients. This observation gave a clue of the involvement of gut-lung axis in this disease development and progression. From several studies reported in past two years, intestinal microbiome has shown to have bidirectional link with lungs i.e., gut dysbiosis increases the tendency of infection with COVID-19 and coronavirus can also cause perturbations in intestinal microbial composition. Thus, in this review we have tried to figure out the mechanisms by which disturbances in the gut composition can increase the susceptibility to COVID-19. Understanding these mechanisms can play a crucial role in decreasing the disease outcomes by manipulating the gut microbiome using prebiotics, probiotics, or combination of two. Even, faecal microbiota transplantation can also show better results, but intensive clinical trials need to be done first.

Keywords: ACE2; COVID-19; Coronavirus; Gut lung axis; Gut microbiome.

© 2023 The Authors.

FULL TEXT LINKS

PAGE NAVIGATION

K Title & authors

Abstract

Conflict of interest statement

Figures

Similar articles

Fig. 1 Mechanism of attack of coronavirus in the human body.

Fig. 2 Interactions of immune system in symbiotic and dys-biotic conditions.

Fig. 3 Bidirectional link of COVID-19 infection and gut dysbiosis (AMP: Antimicrobial peptide, AhR: Aryl hydrocarbon receptor, Trp: Tryptophan.

Fig. 4 Probable mechanisms of increase in COVID-19 susceptibility due to presence of associated comorbidities.

Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease

Mauro Giuffrè ¹ ², Rita Moretti ¹ ³, Claudio Tiribelli ³

Affiliations + expand PMID: 36982303 PMCID: PMC10049444 DOI: 10.3390/ijms24065229 Free PMC article

Abstract

The human gut microbiome plays a crucial role in human health and has been a focus of increasing research in recent years. Omics-based methods, such as metagenomics, metatranscriptomics, and metabolomics, are commonly used to study the gut microbiome because they provide high-throughput and high-resolution data. The vast amount of data generated by these methods has led to the development of computational methods for data processing and analysis, with machine learning becoming a powerful and widely used tool in this field. Despite the promising results of machine learning-based approaches for analyzing the association between microbiota and disease, there are several unmet challenges. Small sample sizes, disproportionate label distribution, inconsistent experimental protocols, or a lack of access to relevant metadata can all contribute to a lack of reproducibility and translational application into everyday clinical practice. These pitfalls can lead to false models, resulting in misinterpretation biases for microbe-disease correlations. Recent efforts to address these challenges include the construction of human gut microbiota data repositories, improved data transparency guidelines, and more accessible machine learning frameworks; implementation of these efforts has facilitated a shift in the field from observational association studies to experimental causal inference and clinical intervention.

Keywords: artificial intelligence; dysbiosis; eubiosis; gut microbiome; gut microbiota; health; machine learning; metagenomics; microbiome; omics; supervised learning; unsupervised learning.

FULL TEXT LINKS

share

PAGE NAVIGATION

Title & authors

Abstract

Conflict of interest statement

Figures

Similar articles

References

Figure 1 Gut Microbiota meets machine learning. The increasing data availability due to omics analysis has not been followed by the creation of data repositories, guidelines, and analytical frameworks in the past, which resulted in unsatisfactory reproducibility and reliability. The implementation of such tools has facilitated a shift in the field from observational association studies to experimental causal inference and clinical intervention.

Non sempre cambiare equivale a migliorare, ma per migliorare bisogna cambiare.

Winston Churchill