

NUOVE FRONTIERE IN ENDOSCOPIA DIGESTIVA Stenting del tubo digerente

Carmelo Luigiano UOS Tecniche Innovative Gastroenterologiche UOC Gastroenterologia Grande Ospedale Metropolitano "BMM" Reggio Calabria

There are no financial arrangements or commercial associations which might be a conflict of interest

Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2021

Spaander MCW et al. Endoscopy 2021

ASGE guideline on the role of endoscopy in the management of benign and malignant gastroduodenal obstruction

Jue TL et al. Gastrointest Endosc 2021

Self-expandable metal stents for obstructing colonic and extracolonic cancer: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2020

van Hooft JE et al. Endoscopy 2020

EFFECTIVE

SAFE

ESOPHAGEAL STENTING FOR BENIGN AND MALIGNANT DISEASE

Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2021

Spaander MCW et al. Endoscopy 2021

Biodegradable stents

Drug-eluting stents

Radioactive stents

Newly designed OTS Clip for preventing fully-covered selfexpandable metal stent migration in the gastrointestinal tract

Manta R et al. Endosc Int Open 2023

Reduction of esophageal stent migration rate with a novel over-the-scope fixation device (with video)

Schiemer M et al. Gastrointest Endosc 2022

Endoscopic suturing for GI applications: initial results from a prospective multicenter European registry

Maselli R et al. Gastrointest Endosc 2022

Technical success: 31/31 (100 %) Clinical success: 30/31 (97 %)

Technical success: 26/26 (100 %) Clinical success: 24/26 (82 %)

Technical success: 38/38 (100 %) Clinical success: 17/20 (85 %) [Follow-up]

Comparison of no stent fixation, endoscopic suturing, and a novel over-the-scope clip for stent fixation in preventing migration of fully covered self-expanding metal stents: a retrospective comparative study (with video)

Migration rates and median time to migration for no stent fixation, suturing, and OTSC										
				Paired tests						
	Cohort (n=433	rt No fixatio 3) (n=239)		on Suture (n=140		OTSC (n=54)	P value	OTSC vs. no fixation	OTSC vs. suture	
Migration, n (%)	246 (57) 148 (62)		2)	79 (57)		19 (35)	0.013	0.015	0.018	
Median time to migration,	4 (1.9, 7) 3 (1.1, 6.4		.4)	5.1 (2.9, 8.4)		6 (4, 8)	0.023			
	and the second									
Secondary outcomes inc	luding o	linical suc	ces	s, mediar	n pr	ocedure	e time, and	adverse ev	ents	
		Cohort N		No fixation S				Paired	tests	
						uture	OTSC	OTSC vs. no fixation	OTSC vs. suture	
Clinical success rate, n (%)		93 (43)	:	35 (26)	2	7 (32)	32 (68)	0.001	0.001	
Median procedure time, min	n (IQR)	45 (27, 70)		(20, 54)	68	(51, 92)	42 (28, 57)	0.062	0.002	
Adverse events, n (%)		80 (18)	!	50 (21) 2		25 (18)	5 (18)	ns	ns	

Park KH et al. Gastrointest Endosc 2022

Endoscopic management of gastrointestinal wall defects, fistula closure, and stent fixation using through-the-scope tack and suture system **D** Krishnan A et al. Endoscopy 2023

3 cases

1 case

Helix tack suspension for esophageal stent fixation Trasolini PB et al. Gastrointest Endosc 2022

Initial multicenter experience using a novel endoscopic tack and suture system for challenging GI defect closure and stent fixation (with video) Mahmoud T et al. Gastrointest Endosc 2022

13 cases

Palliation of malignant esophageal obstruction using an anti-migration self-expandable metal stent: Results of a prospective multicenter study

Technical success: 53/53 (100 %) Migration: 7 (13 %)

Technical success: 20/20 (100 %) Migration: 3 (15 %)

Technical success: 24/24 (100 %) Migration: 7 (17 %)

Conio M et al. Clin Res Hepatol Gastroenterol. 2021

Palliation of malignant dysphagia with a segmented selfexpanding metal stent: A STROBE-compliant article

Wiese MS et al. Medicine (Baltimore). 2021

A novel fully covered self-expandable segmental metallic stents for the treatment of refractory esophageal stenosis

Bi Y et al. J Thorac Dis. 2019

Clinical implantation of 92 VACStents in the upper gastrointestinal tract of 50 patients-applicability and safety analysis of an innovative endoscopic concept Lange J et al. Front Surg. 2023

Technical success: 50/50 (100 %) Clinical success: 38 (76 %)

Vacuum-stent: A combination of endoscopic vacuum therapy and an intraluminal stent for treatment of esophageal transmural defects Pattynama LMD et al. Front Surg. 2023

Technical success: 10/10(100 %) Clinical success: 10 (100 %)

A new hybrid stent using endoscopic vacuum therapy in treating esophageal leaks: a prospective single-center experience of its safety and feasibility with mid-term follow-up Chon SH et al. Dis Esophagus. 2022

Technical success: 20/20 (100 %) Clinical success: 12 (60 %)

SX-ELLA biodegradable stent for benign oesophageal strictures: a systematic review and proportion meta-analysis

Study Author	Technical success N (%)	Clinical success N (%)	Stent migration N (%)	Re-inter- vention N (%)
Canena et al. (2012) [13]	10 (100)	3 (30)	2 (20)	7 (70)
Dhar et al. (2014) [14]	9 (100)	0	-	9 (100)
Griffiths et al. (2012) [18]	6 (86)	3 (60)	0	2 (40)
Hirdes et al. (2012) [19]	26 (93)	9 (40)	3 (11)	-
Karakan et al. (2013) [20]	7 (100)	5 (100)	0	4 (80)
Kochhar et al. (2017) [21]	13 (100)	2 (15.4)	1 (7.6)	12 (92)
McCain et al. (2015) [22]	17 (94)	14 (77.8)	0	4 (22)
Nogales et al. (2017) [15]	12 (100)	8 (66.6)	0	4 (33.3)
Repici et al. (2010) [23]	21 (100)	9 (43)	2 (9.5)	11 (52)
Saeed et al. (2018) [24]	5 (100)	5 (100)	1 (20)	0
Sigounas et al. (2016) [25]	10 (100)	2 (20)	2 (20)	8 (80)
Van Boeckel et al. (2011) [16]	16 (85)	6 (33)	4 (22)	16 (42.1)
Van Hooft et al. (2011) [26]	10 (100)	6 (60)	0	4 (40)
Walter et al. (2018) [17]	32 (100)	15 (46.9)	1 (3.1)	4 (12.5)
Yano et al. (2017) [27]	18 (100)	12 (66.7)	0	_
Yano et al. (2022) [28]	29 (96.7)	4 (13.3)	0	4 (13.3)
Overall	239 (97.2)	103 (41.9)	16 (6.5)	89 (36.2)

Kailla E et al. Surg Endosc. 2023

The development of new esophageal biodegradable stents with different polymeric mixtures, currently available only for biliopancreatic diseases, could represent an attractive therapeutic option in the future

Biodegradable PTX-PLGA-coated magnesium stent for benign esophageal stricture: An experimental study Acta Biomater. 2022

Lin-Lin Liu^{a,1}, Juan Qin^{a,1}, Chu-Hui Zeng^a, Rui-Jie Du^a, Tao Pan^a, Jia-Jie Ji^a, Li-Gong Lu^b, Lei Chen^c, Dong-Fang Liu^d, Jian Yang^d, Shi-Cheng He^{a,*}, Hai-Dong Zhu^{a,*}, Gao-Jun Teng^{a,*}

Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the **Treatment of Oesophageal Cancer** Fouladian P et al. Pharmaceuticals (Basel). 2021

Pharmaceutical Development of 5-Fluorouracil-Eluting Stents for the Potential Treatment of Gastrointestinal Cancers and Related Obstructions Arafat M. et al. Drug Des Devel Ther. 2021

Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers

A novel irradiation stent versus conventional irradiation stent for malignant dysphagia: A prospective randomized controlled trial

Dosimetric Evaluation and Clinical Application of Radioactive Iodine-125 Brachytherapy Stent in the **Treatment of Malignant Esophageal Obstruction** Ji Z et al. Front Oncol. 2022

Fouladian P et al. Biomater Sci. 2020

Zhu GY et al. J Cancer Res Ther. 2021

GASTRODUODENAL STENTING FOR BENIGN AND MALIGNANT DISEASE

ASGE guideline on the role of endoscopy in the management of benign and malignant gastroduodenal obstruction

Jue TL et al. Gastrointest Endosc 2021

New technique for management of malignant gastric outlet obstruction

Endoscopic placement of covered versus uncovered self-expandable metal stents for palliation of malignant gastric outlet obstruction

366 patients were randomised182 patients in CSEMS group184 patients in UCSEMS group

				-
	CSEMS n=182	UCSEMS n=184	P value	
Technical success	182 (100)	184 (100)	1.00	
Clinical success	164 (90.1)	168 (91.3)	0.69	
Overall adverse events	39 (21.4)	37 (20.1)	0.76	
Jaundice and/or cholangitis	23 (12.6)	18 (9.8)	0.39	
Bleeding	3 (1.6)	6 (3.3)	0.51	
Perforation	3 (1.6)	3 (1.6)	0.69	
Pancreatitis	2 (1.1)	2 (1.1)	0.62	
Other	8 (4.4)	8 (4.3)	0.82	
Overall stent dysfunction	64 (35.2)	43 (23.4)	0.01	
Stent ingrowth	6 (3.3)	23 (12.5)	<0.01	
Stent overgrowth	12 (6.6)	4 (2.2)	0.04	
Stent migration	22 (12.1)	4 (2.2)	<0.01	
Other	24 (13.2)	12 (6.5)	0.03	

Yamao K et al. Gut. 2021

Comparison of novel large-bore and conventional-bore covered self-expandable metal stents for malignant gastric outlet obstruction: Multicenter, retrospective study

	24 mm- cSEMS (n = 49)	20 mm- cSEMS (n = 68)	P-value	A.
Stent length, cm			-	
8	NA	9 (13)		
9	6 (12)	NA		
10	NA	12 (6)		the
12	26 (53)	38 (56)		
15	16 (33)	NA		
Multiple stenting	1 (2)	9 (13)		3
Procedure time, min	31 (25–40)	35 (30–49)	0.03	
Technical success	49 (100)	68 (100)	1.00	
Clinical success	47 (96)	65 (96)	1.00	
Time to resume oral	2 (1–8)	2 (1–8)	0.23	
intake, days				
Best GOOSS score after			0.39	2
SEMS placement				
0 (no oral intake)	2 (4)	3 (4)		
1 (liquids possible)	O (O)	4 (6)		
2 (soft solids possible)	3 (6)	4 (6)		and the second s
3 (low-residue or full	44 (90)	57 (84)		
diet possible)				
Chemotherapy after	21 (45)	29 (42)	0.99	
SEMS placement				
Time to start	13 (3–23)	12 (6–45)	0.83	3
chemotherapy [†] , days				C

		24 mm- cSEMS (n = 49)	20 mm- cSEMS (n = 68)	P-value
	RGOO			
	Overall	8 (16)	21 (31)	0.11
	Stent migration	0 (0)	7 (10)	
	Tumor ingrowth	6 (12)	4 (6)	
	Tumor overgrowth	1 (2)	6 (9)	
	Inadequate stent expansion	1 (2)	3 (4)	
	Food impaction	0 (0)	1 (1)	
	Stent fracture	0 (0)	0 (0)	
	Reintervention			
	Overall	8 (16)	21 (31)	0.11
	Surgical procedure	2 (4)	1 (1)	
1	Bypass	2 (4)	0 (0)	
	Removal of migrated stent	0 (0)	1 (1)	
	Endoscopic procedure	6 (12)	20 (29)	
	Additional SEMS placement	6 (12)	19 (28)	
1	Food removal	0 (0)	1 (1)	
	Adverse events			
	Overall	6 (12)	10 (15)	0.91
	Perforation	0 (0)	2 (3)	
	Bleeding	2 (4)	1 (1)	
1	Pancreatitis	1 (2)	1 (1)	
	Cholangitis	2 (4)	1 (1)	
	Asymptomatic migration	1 (2)	5 (7)	

The median cumulative time to recurrent gastric outlet obstruction was significantly longer in 24 mm-cSEMS than in 20 mm-cSEMS (380 days vs. 138 days, P = 0.01).

In multivariate analysis the 24 mm -cSEMS was associated with an Improved time to recurrent gastric outlet obstruction (95% confidence interval 0.16–0.80, P = 0.02).

Inokuma A et al. Dig Endosc. 2023

Feasibility and safety of duodenal covered self-expandable metallicstent fixation: an experimental studyHori Y et al. Surg Endosc. 2019

A pilot study of novel duodenal covered self-expandable metal stent fixation Hori Y et al. Sci Rep. 2021

Duodenal stent fixation using through-the-scope helix tack and suture device Wilson N et al. Endoscopy 2023

Efficacy and safety of endoscopic duodenal stent versus endoscopic or surgical gastrojejunostomy to treat malignant gastric outlet obstruction: systematic review and meta-analysis

EUS-GE had a lower rate of technical success (95.3%) than duodenal SEMS (99.4%) or surgical GJ (99.9%) [P = 0.0048].

Duodenal SEMS vs. EUS-GE vs. surgical GJ, had a similar rates of clinical success (88.9% vs. 89.0% vs. 92.3% respectively, P = 0.49).

EUS-GE had a lower rate of GOO recurrence (P = 0.0036)

Duodenal SEMS had a higher rate of reintervention (P = 0.041).

Overall procedural complications were similar (duodenal SEMS 18.7% vs. EUS-GE 21.9% vs. surgical GJ 23.8%, P = 0.32)

Bleeding rate was lowest (P = 0.0048) and stent occlusion rate was highest (P = 0.0002) for duodenal SEMS.

EUS-GE appears to be a promising treatment for patients with malignant GOO for whom surgery is contraindicated or less desirable.

Krishnamoorthi R et al. Endosc Int Open 2022

Palliative therapy for malignant gastric outlet obstruction: how does the endoscopic ultrasound-guided gastroenterostomy compare with surgery and endoscopic stenting? A systematic review and meta-analysis

ENDOSCOPIC ULTRASOUND-GUIDED GASTROENTEROSTOMY (EUS-G) VERSUS ENDOSCOPIC STENTING (ES) Six studies – 437 patients

Technical success: No difference (EUS-G 93.6% versus ES 96.6%; RD: -0.03; 95% Cl: -0.07 to 0.02; p = 0.29; l2 = 12%).
Clinical success: Higher in EUS-G group (91.1% versus 78.7%, RD 0.10, 95% Cl: 0.03-0.17; p = 0.003; l2 = 74%).
Length of hospital stay: Shorter in EUS-G group (MD: -2.82; 95% Cl: - 5.05 to - 0.59; p = 0.01; l2 = 94%).
Time to tolerate an oral diet: Shorter in ES group (ES 1.38 ± 1.31 versus EUS-G 2.48 ± 0.99 p = 0.005).
Reintervention: Higher in ES group (32.7% versus 4.2%, RD: -0.27; 95% Cl: -0.36 to -0.19; p < 0.001; l2 = 41%).
Serious adverse events: Higher in ES group (34.8% versus 12%, RD: -0.18; 95% Cl: -0.28 to -0.09]; p < 0.001; l2 = 78%).

ENDOSCOPIC ULTRASOUND-GUIDED GASTROENTEROSTOMY (EUS-G) VERSUS SURGICAL GASTROJEJUNOSTOMY (SGJJ) Five studies - 305 patients

Technical success: Higher in SGJJ group (99% versus 91.5%, RD: -0.08; 95% CI: -0.14 to -0.02; p = 0.008; I2 = 0%).
Clinical success: No difference (90.7% versus 88.6%; RD: 0.03; 95% CI: -0.04 to 0.10; p = 0.37; I2 = 59%).
Length of hospital stay: Shorter in EUS-G group (MD: -5.95; 95% CI: -6.99 to -4.91; p < 0.001; I2 = 95%).
Time to tolerate an oral diet: Shorter in EUS-G group (MD: -2.89; 95% CI: -3.79 to -1.99; p < 0.001; I2 = 0%).
Reintervention: No difference (17.7% versus 11.9%; RD: -0.07; 95% CI: -0.15 to 0.01; p = 0.07; I2 = 0%).
Serious adverse events: No difference (EUS-G 15.7% versus SGJJ 14.2%; RD: -0.05; 95% CI: -0.17 to 0.06; p = 0.37; I2 = 35%).

Martins RK et al. Ther Adv Gastrointest Endosc 2023

COLORECTAL STENTING FOR BENIGN AND MALIGNANT DISEASE

Self-expandable metal stents for obstructing colonic and extracolonic cancer: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2020

van Hooft JE et al. Endoscopy 2020

PREOPERATIVE

ESGE recommends stenting as a bridge to surgery to be discussed, within a shared decision-making process, as a treatment option in patients with potentially curable left-sided obstructing colon cancer as an alternative to emergency resection.

This discussion should include the following factors:

- availability of required stenting expertise
- risk of stent-related perforation
- higher recurrence rates
- similar overall survival and postoperative mortality
- lower overall complication rates and permanent stoma rates
- higher proportion of laparoscopic one-stage surgery procedures
- technical and clinical failure rates of stenting

Strong recommendation, high quality evidence

van Hooft et al. Endoscopy. 2020

Current Status of the Self-Expandable Metal Stent as a Bridge to Surgery Versus Emergency Surgery in Colorectal Cancer: Results from an Updated Systematic Review and Meta-Analysis of the Literature

A total of 12 articles were included

Author	Country	Number of	Time of	Premature	Number of Patients Enrolled		
	y	Centres	Enrollment	Closure of the Trial	SEMS	Surgery	
Arezzo et al., 2020	Italy/Spain	Multicenter	2008-2015	No	56 *	59	
Elwan et al., 2020	Égypt	Single-centre	2015-2019	No	30	30	
Arezzo et al., 2017	Italy/Spain	Multicenter	2008-2015	No	56 *	59	
Sloothaak et al., 2014	Netherlands	Single-centre	2007-2009	Yes	26	32	
Thung et al., 2013	Hong Kong, China	Single-centre	2002-2005	No	24	24	
Ghazal et al., 2013	Egypt	Single center	2009-2012	No	30	30	
Ho et al., 2012	Singapore	Single-centre	2004-2008	No	20	19	
Pirlet et al., 2011	France	Multicenter	2002-2006	Yes	30	30	
Van Hooft et al., 2011	Netherlands	Multicenter	2007-2009	Yes	47	51	
Cui et al., 2011	China	Single center	2005-2009	No	29	15	
Alcántara et al., 2011	Spain	Single-centre	2004-2006	Yes	15	13	
Cheung et al., 2009	Hong Kong, China	Single-centre	2002-2005	No	24	24	

Cirocchi R et al. Medicina 2021

Overall postoperative mortality rate

Heterogeneity: Tau^z = 0.00; Chi^z = 3.64, c Test for overall effect: Z = 0.18 (P = 0.86)

Cirocchi R et al. Medicina 2021

Overall postoperative mortality rate during the hospital stay

Overa comp

		SEM	S	ES			Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
	Alcantara 2011	2	15	7	13	6.0%	0.25 [0.06, 0.99]	
	Arezzo 2017	29	56	34	59	18.3%	0.90 [0.64, 1.26]	
	Cheung 2009	2	24	17	24	6.2%	0.12 [0.03, 0.45]	
	Cui 2011	1	29	2	30	2.6%	0.52 [0.05, 5.40]	
	Elwan 2020	7	30	12	30	11.6%	0.58 [0.27, 1.28]	
Il postoperative	Ghazal 2013	4	30	15	30	9.3%	0.27 [0.10, 0.71]	
lications	Ho 2012	7	20	11	19	12.6%	0.60 [0.30, 1.23]	—• +
incations	Pirlet 2011	15	30	17	30	16.2%	0.88 [0.55, 1.42]	
	van Hooft 2011	25	47	23	51	17.2%	1.18 [0.79, 1.77]	- - -
	Total (95% CI)		281		286	100.0%	0.61 [0.41, 0.91]	•
	Total events	92		138				_
	Heterogeneity: Tau ² = Test for overall effect:	0.20; Chi Z = 2.41 (i ^z = 23.1 (P = 0.0	0.01 0.1 1 10 100 Favours SEMS Favours ES				

	SEMS			MS ES		Risk Ratio		Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
	Alcantara 2011	2	15	7	13	33.4%	0.25 [0.06, 0.99]	
Overall postoperative complications during	Ghazal 2013	4	30	15	30	66.6%	0.27 [0.10, 0.71]	
the hegpital stay	Total (95% CI)		45		43	100.0%	0.26 [0.12, 0.58]	◆
the hospital stay	Total events	6		22				
	Heterogeneity: Tau ² = Test for overall effect:	0.00; Ch Z = 3.30	i ^z = 0.01 (P = 0.0	1, df = 1 (1010)	P = 0.9	3); I² = 09	6	0.01 0.1 1 10 100 Favours SEMS Favours ES

Cirocchi R et al. Medicina 2021

con il patrocinio di

KIER Matthe

Associations Refere Concentrations & Dedexecution Dependent Copenhalism

ulss 1

BELLUNO

Success of primary anastomosis

	SEM	S	ES			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Alcantara 2011	14	15	9	13	11.1%	1.35 [0.92, 1.98]	
Arezzo 2017	43	56	36	59	13.9%	1.26 [0.98, 1.62]	
Cheung 2009	20	24	11	24	9.6%	1.82 [1.14, 2.91]	
Cui 2011	18	29	7	20	6.7%	1.77 [0.92, 3.44]	
Elwan 2020	21	30	18	30	11.4%	1.17 [0.80, 1.70]	
Ghazal 2013	29	30	30	30	16.4%	0.97 [0.88, 1.06]	
Ho 2012	20	20	19	19	16.3%	1.00 [0.91, 1.10]	-
Pirlet 2011	16	30	11	30	7.9%	1.45 [0.82, 2.59]	
van Hooft 2011	15	47	11	51	6.6%	1.48 [0.76, 2.89]	
Total (95% CI)		281		276	100.0%	1.26 [1.01, 1.57]	•
Total events	196		152				
Heterogeneity: Tau ² =	0.08; Ch	i ^z = 57.3	87, df = 8	(P < 0.	00001); P	² =86% —	
Test for overall effect:	Z = 2.02 ((P = 0.0	(4)				U.S U.7 I 1.5 Z Favours ES Favours SEMS

	SEM					Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl	
Alcantara 2011	0	14	4	13	9.7%	0.10 [0.01, 1.76]	4		
Arezzo 2017	3	43	2	36	24.9%	1.26 [0.22, 7.11]			
Cheung 2009	0	20	2	13	8.9%	0.13 [0.01, 2.57]	•		
Elwan 2020	0	21	0	18		Not estimable			
Ghazal 2013	0	29	1	30	7.8%	0.34 [0.01, 8.13]			
Ho 2012	1	20	0	19	7.9%	2.86 [0.12, 66.11]			-
Pirlet 2011	2	22	2	14	22.2%	0.64 [0.10, 4.01]			
van Hooft 2011	5	21	1	12	18.5%	2.86 [0.38, 21.68]			
Total (95% CI)		190		155	100.0%	0.78 [0.32, 1.91]		-	
Total events	11		12						
Heterogeneity: Tau² =	0.05; Ch	i² = 6.2	3, df = 6 (P = 0.4	0); I ² = 49	6			
Test for overall effect:	Z = 0.55	(P = 0.5	i8)				0.01	Eavours SEMS Eavours ES	00

Anastomotic Leakage

Cirocchi R et al. Medicina 2021

A start

Associations Refere Concentrations & Dedexecution Dependent Copenhalism

ulss 1

BELLUNO

	SEM	s	ES			Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rand	om, 95% Cl	
Alcantara 2011	8	15	2	13	13.4%	3.47 [0.89, 13.51]				
Arezzo 2020	15	53	20	55	28.8%	0.78 [0.45, 1.35]			+	
Ghazal 2013	5	30	4	30	15.4%	1.25 [0.37, 4.21]			•	
Sloothaak 2014	13	26	9	32	25.9%	1.78 [0.91, 3.49]				
Tung 2013	11	24	3	24	16.5%	3.67 [1.17, 11.52]				
Total (95% CI)		148		154	100.0%	1.63 [0.88, 3.04]			•	
Total events	52		38							
Heterogeneity: Tau² =	0.27; Ch	i² = 9.3	5, df = 4 (P = 0.0	5); I² = 57	%	0.01	0.1	1 10	100
Test for overall effect:	Z=1.55	(P = 0.1	2)				0.01	Favours SEMS	Favours ES	

Overall Recurrence

	SEMS		ES		ES		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI		
Arezzo 2020	5	53	7	55	54.4%	0.74 [0.25, 2.19]			
Ghazal 2013	2	29	1	30	14.9%	2.07 [0.20, 21.60]			
Sloothaak 2014	5	26	2	32	30.8%	3.08 [0.65, 14.58]			
Total (95% CI)		108		117	100.0%	1.34 [0.52, 3.43]	-		
Total events	12		10						
Heterogeneity: Tau ² =	0.12; Ch	i² = 2.3	6, df = 2 (P = 0.3	1); l² = 15	%			
Test for overall effect:	Z = 0.61	(P = 0.5	(4)				Favours SEMS Favours ES		

Local Recurrence rate

	SEM	S	ES			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Arezzo 2020	10	53	13	55	51.6%	0.80 [0.38, 1.66]		
Ghazal 2013	3	29	3	30	12.0%	1.03 [0.23, 4.71]		
Sloothaak 2014	8	26	7	32	36.4%	1.41 [0.59, 3.37]		
Total (95% CI)		108		117	100.0%	1.01 [0.60, 1.71]	•	
Total events	21		23					
Heterogeneity: Tau ² =	0.00; Ch	i ^z = 0.9:	5, df = 2 (P = 0.6	2); I ² = 09	6		100
Test for overall effect:	Z = 0.04	(P = 0.9	16)				Favours SEMS Favours ES	100

Systemic recurrence rate

Cirocchi R et al. Medicina 2021

1

	SEM	S	ES			Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rando	om, 95% Cl		
Alcantara 2011	6	15	4	13	15.5%	1.30 [0.47, 3.62]			•		
Arezzo 2020	18	56	20	59	59.7%	0.95 [0.56, 1.60]			-		
Sloothaak 2014	9	26	5	32	17.5%	2.22 [0.85, 5.80]		+	-		
Tung 2013	5	21	2	13	7.3%	1.55 [0.35, 6.85]			•		
Total (95% CI)		118		117	100.0%	1.20 [0.80, 1.79]			•		
Total events	38		31								
Heterogeneity: Tau ² =	0.00; Ch	i ^z = 2.4	9, df = 3 (P = 0.4	8); I ² = 09	6				10	100
Test for overall effect:	Z = 0.88	(P = 0.3	8)				0.01 Fa	vours SEMS	Favours E	S	100

Three years overall survival

	SEM	S	ES			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Arezzo 2017	22	56	22	59	50.7%	1.05 [0.66, 1.68]	+
Sloothaak 2014	16	26	14	32	44.3%	1.41 [0.86, 2.31]	+ - -
Tung 2013	5	22	2	13	4.9%	1.48 [0.33, 6.55]	
Total (95% CI)		104		104	100.0%	1.22 [0.87, 1.69]	•
Total events	43		38				
Heterogeneity: Tau² =	0.00; Ch	i ^z = 0.71	7, df = 2 ((P = 0.6	8); I ² = 09	6	
Test for overall effect:	Z = 1.17	(P = 0.2	(4)				Favours SEMS Favours ES

- JUM

Three years disease free survival

Cirocchi R et al. Medicina 2021

and the second state

Critical appraisal of oncological safety of stent as bridge to surgery in leftsided obstructing colon cancer; a systematic review and meta-analysis

Five-year overall survival rate was retrievable from seven studies (230 vs. 283 patients)

Five-year disease-free survival in six studies (206 vs. 306 patients)

Amelung et al. Critical Reviews in Oncology/Hematology 2018

		SEMS as	s BTS	Emergency S	urgery		Odds Ratio		Odds I	Ratio		
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rando	m, 95% CI		
	Amelung, 2016	14	38	5	19	11.7%	1.63 [0.48, 5.51]			•		
	Flor, 2017	4	24	10	42	10.4%	0.64 [0.18, 2.32]					
	Gibor 2017	12	19	20	39	13.7%	1.63 [0.53, 5.01]			•		
ive-vear overall survival rate	Kim, 2013	б	18	26	67	14.4%	0.79 [0.26, 2.36]					
ive year overall survival face	Kim, 2016	16	80	8	38	19.0%	0.94 [0.36, 2.43]					
	Quereshy, 2013	13	18	27	39	11.3%	1.16 [0.34, 3.97]					
	Saida, 2003	19	33	23	39	19.5%	0.94 [0.37, 2.42]					
	Total (95% CI)		230		283	100.0%	1.04 [0.68, 1.57]			•		
	Total events	84		119								
	Heterogeneity. Tau ²	= 0.00; Ch	ni ² = 2.0	95, df = 6 (P =	0.92); I ²	= 0%		0.01	01 1	1	0	100
	Test for overall effect	Z = 0.17	P = 0.	.86)				Fa ¹	vours SEMS as BITS	Favours Emerge	ency Surge	ny IOO

F

Five-y

		SEMS as	BTS	Emergency Su	irgery		Odds Ratio		Odds Ratio	
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M–H, Random, 95% Cl	
	Saida, 2003	17	40	16	39	23.0%	1.06 [0.43, 2.60]	2003		
	Kim, 2013	7	18	19	48	15.7%	0.97 [0.32, 2.95]	2013		
	Quereshy, 2013	21	26	30	38	12.6%	1.12 [0.32, 3.90]	2013		
ar disaasa-fraa survival	Choi, 2014	5	23	29	97	16.4%	0.65 [0.22, 1.92]	2014		
ai uisease-iiee sui vivai	Kim, 2016	24	79	10	37	24.1%	1.18 [0.49, 2.81]	2016		
	Flor, 2017	2	20	19	47	8.2%	0.16 [0.03, 0.79]	2017		
	Total (95% CI)		206		306	100.0%	0.86 [0.54, 1.36]		+	
	Total events	76		123						
	Heterogeneity: Tau ² =	= 0.03; Ch	$i^2 = 5.5$	3, df = 5 (P =	0.35); I ²	= 10%		0.01	01 1 10	100
	Test for overall effect	Z = 0.66	(P = O.	51)				0.01	Favours SEMS as BTS Favours Emergency Surgery	y 100

(-____)/////

Amelung et al. Critical Reviews in Oncology/Hematology 2018

and the set

Colonic stent as a bridge to surgery versus emergency resection for right-sided malignant large bowel obstruction: a meta-analysis

Seven studies were included, comprising 5136 patients, of whom 1662 (32.4%) underwent BTS and 3474 (67.6%) underwent ER.

	No. of	Rates % (BTS ^a : ER ^b)	ORs ^c	95% CI ^d	P value	Hetero	geneity	r.
	stud- ies					χ^2	I ² (%)	P value
Primary anastomosis	5	97.8: 85.9	0.31	0.10-0.96	0.04	0.11	0	0.95
Stoma construction	6	2.0: 11.0	0.45	0.25-0.83	< 0.01	5.09	21	0.28
Laparoscopic surgery	7	48.5: 15.7	0.21	0.10-0.42	< 0.01	18.36	67	< 0.01
Anastomotic leakage	6	2.6: 5.6	0.66	0.45-0.96	0.03	0.55	0	0.99
Surgical site infection	6	4.6: 5.8	0.62	0.46-0.82	< 0.01	4.37	0	0.50
Ileus	6	6.7: 3.1	1.28	0.96–1.71	0.09	4.87	0	0.43

Kanaka et al. Surg Endosc 2022

DTC

CD

Odde Datio

BELLUNO 15-16 GIUGNO 2023

Postoperative complications

Postoperative mortality

	D	13	En			Ouus nauo	Ouus nauo
Study or Subgroup	p Event	s Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Amelung FJ 2016	1	2 44	699	1774	7.5%	0.58 [0.30, 1.13]	
Ji WB 2017		1 14	10	25	2.0%	0.12 [0.01, 1.03]	
Kye BH 2016		6 25	9	49	1.4%	1.40 [0.44, 4.52]	_
Li B 2020		4 35	21	72	3.7%	0.31 [0.10, 1.00]	
Morita S 2019		3 28	10	37	2.3%	0.32 [0.08, 1.31]	
Sakamoto T 2020	28	7 1500	332	1500	81.8%	0.83 [0.70, 0.99]	
van den Berg 2014	1	7 16	7	17	1.2%	1.11 [0.28, 4.42]	
Total (95% CI)		1662		3474	100.0%	0.78 [0.66, 0.92]	•
Total events	32	0	1088				
Heterogeneity: Chi	² = 9.35, dt	f= 6 (P =	0.15); I²	= 36%		F	
Test for overall effe	ect: Z = 3.0	0 (P = 0.)	003)			U	Eavours (BTS) Eavours (ER)
	BTS		ER			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Amelung FJ 2016	1	44	155	1774	21.7%	0.24 [0.03, 1.78]	
Ji WB 2017	0	14	0	25		Not estimable	
Kye BH 2016	0	25	0	49		Not estimable	
Li B 2020	0	35	1	72	2.9%	0.67 [0.03, 16.90]	
Morita S 2019	0	28	1	37	3.8%	0.43 [0.02, 10.88]	
Sakamoto T 2020	13	1500	24	1500	70.3%	0.54 [0.27, 1.06]	
van den Berg 2014	1	16	0	17	1.3%	3.39 [0.13, 89.37]	
Total (95% CI)		1662		3474	100.0%	0.51 [0.28, 0.92]	•
Total events	15		181			the former story	•
Hotorogonoity Chi2-	1 00 df-	1 (D - 0	101	- 0%			
Toct for overall effect	7-222	P = 0.01), (U), (°=	0 70			0.01 0.1 1 10 100
restion overall effect.	L= 2.22 (r = 0.0.	5)				Favours [BTS] Favours [ER]

Odde Datia

Kanaka et al. Surg Endosc 2022

and the second second

Safety and feasibility of neoadjuvant chemotherapy as a surgical bridge for acute left-sided malignant colorectal obstruction: a retrospective study

23 patients FOLFOX: median of 4 courses (IQR, 3-6 courses) 7 patients FOLFOXIRI: median of 8 courses (IQR, 6-10 courses) 2 patients XELOX: median of 2 courses (IQR, 2-2 courses)

	Surgery* (<i>n</i> = 63)	Neoadjuvant chemotherapy*(<i>n</i> = 32)	<i>P</i> value
Postoperative CEA, N%			0.692
Normal	33 (63.5)	21 (67.7)	
Elevated	19 (36.5)	10 (32.3)	
Postoperative complication, N%			0.001
No	46 (73.0)	32 (100.0)	
Yes	17 (27.0)	0 (0.0)	
ICU, N%			0.042
No	53 (84.1)	32 (100.0)	
Yes	10 (15.9)	0 (0.0)	
Stoma, N%			0.198
No	21 (33.3)	15 (46.9)	
Yes	42 (66.7)	17 (53.1)	
1-year locoregional recurrence, N%			0.660
No	58 (92.1)	31 (96.9)	
Yes	5 (7.9)	1 (3.1)	
1-y Mortality, N%			0.439
No	51 (82.3)	29 (90.6)	
Yes	11 (17.7)	3 (9.4)	
1-y with stoma, N%			0.047
No	46 (73.0)	29 (90.6)	
Yes	17 (27.0)	3 (9.4)	
Postoperative bowel function (days), median, (IQR)	5.00 (3.00-6.00)	3.00 (2.00-3.00)	< 0.001
Postoperative hospital stay (days), median, (IQR)	13.00 (10.00-19.00)	8.00 (7.25-11.75)	< 0.001
Total Hospital stay (days), median, (IQR)	20.00 (16.00-25.00)	15.50 (13.00-18.75)	0.002
Surgery time (min), median, (IQR)	230.00 (180.00-300.00)	213.00 (188.50-270.00)	0.428
Intraoperative blood loss (ml), median, (IQR)	100.0 (50.0-200.0)	100.00 (50.00-187.50)	0.209

Zhang J et al. BMC Cancer 2022

114 patients with unresectable CRC obstruction

SEMS n = 73 or palliative surgery n = 41

28/41 (68.3 %) primary resection with anastomosis 4/41 (9.8 %) Hartmann's operation 4/41 (9.8 %) colostomy or ileostomy 5/41 (12.2 %) bypass

Ahn et al.Surg Endosc 2016

2911 M

The median survival was shorter after SEMS placement than after surgery (209 vs. 349 days; P = .005).

Ahn et al.Surg Endosc 2016

In patients with an Eastern Cooperative Oncology Group (ECOG) 0 or 1, the median survival was 253 days (95 % Cl 160 – 346 days) in the SEMS group and 403 days (95 % Cl 230 – 576 days) in the surgery group (P = .016).

Ahn et al.Surg Endosc 2016

2711 M

In patients with an ECOG performance status of 2 or 3, the median survival did not differ between groups (70 vs. 65 days, respectively; P = .487)

Systemic Chemotherapy is a Promising Treatment Option for Patients with Colonic Stents: A Review

2711 M

Matsuda et al. J Anus Rectum Colon 2021

1

⁶⁶Nella vita possono toglierti tutto, ma non quello che hai imparato studiando. Ecco perché non dovrai mai smettere di studiare e migliorarti⁹⁹

> Gioacchino Cartabellotta Medico di un piccolo paese che pensava in grande Alia (PA) 1922 - Palermo 1980