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Ethical code related to Artificial Intelligence
Tools

This lecture is the result of

Arificial Intelligence
OR
My Natural Deficiency
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B Advances in Speed
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Figure 1. Improvements over 50 Years in the Ability of Computers to Store and Process Data.
Panel A shows advances in data storage, in terms of both physical size and cost per unit of storage. RAMAC denotes random access
method of accounting and control. Panel B shows advances in the speed of computing. Each dot represents an individual machine type
and the approximate year of its introduction. These improvements in storage and speed have allowed machine learning to progress
from a dream to reality. Data in both panels are estimates from many types of system architecture and are derived from multiple public
sources.
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|| termine Machine Learning e stato coniato da Arthur Samuel nel 1959, che lo ha

definito come:

«Machine Learning is the field of study that gives computers the ability to
learn without being explicitly programmed»

@w\gwml

Raw input Feature engineering  Features

-

Traditional ML model Output

Anin

Alcuni compiti non possono essere infatti definiti esaustivamente, tranne che tramite esempi.
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Fig. 4. Artificial intelligence could support doctors in decision making in tumour therapy in the future. (A) Current oncologic therapy pattern. After an initial
first-line therapy, the tumour is evading therapy through resistance mechanisms. The following tumour growth is recognised during radiologic follow-up leading
to therapy adjustment. (B) Hypothetical, future, Al-supported therapy pattern. Initial, individualized first-line therapy decision, accounting for an Al-based
recommendation. After an Al algorithm predicts progression of a tumour, doctors decide to adjust therapy before the tumour can develop resistance to ther-
apy and grow again.



Measurement of liver fibrosis Diagnosis and prognosis of NAFLD
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Prediction of disease progression Diagnosis of focal liver lesions
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Artificial Intelligence applications in diagnostic and
prognostic imaging in hepatology

IMAGING-DRIVEN DIAGNOSIS and PROGNOSIS

/N

IMAGING ACQUISITION IMAGING INTERPRETATION



Critical Issues
* High Subjectivity

E B TR e Experience and Tiredness
L'analisi visiva riesce a estrarne solo circa il 10% delle informazioni contenute in una immagine medica digitale

- e

Radiomica = le immagini ottenute dagli esami TAC, RM o PET, vengono convertite in dati numerici.

Se le immagini sono analizzate in dettaglio attraverso dei software di analisi della tessitura dell'immagine e possibile
ottenere dati quantitativi oggettivi, in grado di fornire informazioni sui sottostanti fenomeni pato-fisiologici, inaccessibili
alla semplice analisi visiva.

Radiogenomica

Mette in relazione i dati quantitativi ottenuti con la radiomica con i dati genomici del tumore.

L'obiettivo e che una semplice analisi radiomica non invasiva possa essere in grado di informarci se un tumore abbia una
certa mutazione, evitanto analsi di tessuti !!!!



_a Radiomica e spesso applicata in ambito oncologico, allo scopo di
porre le basi per la futura

MEDICINA DI PRECISIONE

Un evidente vantaggio auspicato degli approcci radiomici in ambito

oncologico e quello di rimpiazzare la biopsia del tessuto tumorale, e
quindi;

« sostituire una tecnica invasiva con una non invasiva:

* ridurre il rischio di errato campionamento dei tessuti, dato che

negli approcci radiomici I'intera lesione viene analizzata.
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Figure 1:  Flowchart shows the process of radiomics and the use of radiomics in decision support. Patient work-up requires information from disparate sources to
be combined into a coherent model to describe where the lesion is, what it is, and what it is doing. Radiomics begins with acquisition of high-quality images. From
these images, a region of interest (ROJ) that contains either the whole tumor or subregions (ie, habitats) within the tumor can be identified. These are segmented with
operator edits and are eventually rendered in three dimensions (30). Quantitative features are extracted from these rendered volumes to generate a report, which is
placed in a database along with other data, such as clinical and genomic data. These data are then mined to develop diagnostic, predictive, or prognostic models for

outcomes of interest.



Radiomics

RADIOMICS: the conversion of digital images into mineable data
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Features relative a
forma e dimensione

Features statistiche del
primo ordine

Features statistiche di
ordine superiore

Features che descrivono forma
e dimensione della ROI (2D o
3D).

Features calcolate a partire
dall'istogramma che
rappresenta la distribuzione dei
valori dei pixel/voxel nella ROI.

Features che descrivono
relazioni tra i valori di due o piu
pixel/voxel nella ROI.



http://www.slicer.org/

Per effettuare correttamente uno studio di Radiomica + ML e necessario un gruppo di
ricerca altamente interdisciplinare, data le molteplici e differenti competenze

necessarie:
Medico (e.g.
* Acquisizione dei dati Oncolo(go?
* Controllo di qualita dei macchinari e dei dati acquisiti z \
* Segmentazione automatica/manuale delle regioni di interesse m Radiologo
* Annotazione dei campioni \ J
Preprocessing dei dati Fisico / Statistico / Fisico Medico
* Estrazione delle features radiomiche Matematico
* Addestramento algoritmi di Machine Learning \ /
* Valutazione dei risultati Tecnico di

Radiologia

* Valutazione dell'impatto clinico dei risultati dell’analisi di radiomica + ML
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Tra gli Obiettivi principali:

Sviluppo di algoritmi per
- diagnosi precoce
- modelli di gestione territoriale patologie alto impatto epid.
- stratificazione personalizzata dl rischio di progressione,
complicanze e eventi avversi
- benefici ed eventi avversi di terapie farmacologiche
- riposizionamento di farmaci

TO
...a precise cure

for each one!




Radiomics: Applicazioni cliniche

Ha diverse applicazioni nell’ambito della diagnostica clinica, tra le quali [1],[2],[3].[4]:

1. Previsione della risposta alla terapia del cancro (Treatment response and Outcomes)

2.
3.
4.
5.

Stadiazione del tumore (Tumor staging)
Aggressivita del tumore (Level of malignancy)
Identificazione del tessuto e tipizzazione della lesione (Tissue Identification and typing)

Valutazione della genetica del cancro (Radiogenomics)

Post-trattamento

Pre-trattamento

T3

— — Risposta alla terapia nel cancro della :
Metastasis linfonodale vescica Curve typing

T2

[2] Stephen S F Yip and Hugo J W L Aerts 2016 Phys. Med. Biol. 61 R150
[3] Introduction to Radiomics Marius E. Mayerhoefer, Andrzej Materka, Georg Langs, Ida Haggstrém, Piotr Szczypinski, Peter Gibbs, Gary Cook Journal of Nuclear Medicine Apr 2020, 61 (4) 488-495

[4] Bogowicz, Marta, et al. "CT radiomics and PET radiomics: ready for clinical implementation?." The Quarterly Journal of Nuclear Medicine and Molecular Imaging: Official Publication of the Italian
Association of Nuclear Medicine (AIMN)[and] the International Association of Radiopharmacology (IAR),[and] Section of the Society of..




IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

Deep learning for liver tumor diagnosis part I: development
of a convolutional neural network classifier for multi-phasic MRI

Charlie A Hamm'~. Clinton J. Wang" - Lynn J. Savic** - Marc Ferrante " - Isabel Schobert ' - Todd Schlachter” -

MingDe Lin" - James S. Duncan** . Jefirey C Weinreb ' - Julius Chapiro” - Brian Letzen'

Average of 20 iterations (1.6%, 93.5%)

100% /.
~ Reader dataset (2%, 90%)

80% z
ﬁ (0%, 70%) ’
¢ 60% 4 (0% 60%)
8 " AUC=0.992
S 40%
E
- P '

20%

0% v

0% 20% 40% 60% 80%

False Positive Rate

100%

@ Model
A Radiologist

* | Four hundred ninety-four hepatic lesions with typical
Chaack: for imaging features from six categories(simple cyst, cavernous
e hemangioma, focal nodular hyperplasia, HCC, intrahepatic
cholangiocarcinoma, and colorectal cancer metastasis) were
utilized, divided into training (n = 434) and test (n = 60) sets.

* The ground truth was extracted from official reports

* 20 iterations were performed, randomly splitting lesions
into training and test set.

* The model performance was evaluated in distinguishing the
six lesion entities as well as three broader categories that
simulate the application of a deep learning model to an HCC
diagnostic imaging framework such as LI-RADS.

» After model engineering was finalized, classification
accuracy for the final CNN was compared with two board-
certified radiologists on an identical unseen test set

Accuracy of lesion Accuracy of derived LI-RADS Runtime (mean + SD)

classification classification
(mean + SD %) (mean + SD %)
Average of 20 iterations
Model training set 98.7+1.0 99.1+0.7 29 min+4
Model test set 01.9+29 943+29 5.6 mst4.6
Reader study (n=60)
Model 20.0 91.7 1.0 ms=04
Radiologist 1 80.0 88.3 14+10s
Radiologist 2 85.0 883 17+24 s
o




* 50 lesion cases taken from 29 patients were selected for the development set; 142
lesion from 71 patients were chosen for the evaluation set.

* The data include various liver metastatic lesions derived from different primary sites

s showing melanoma, breast cancer, colorectal cancer, and pancreatic cancer

CT Im ~ge-based Decision Support System for ° For each lesion, two 2D images (portal phase and non contrast CT) were available

Academic Radiology

Volume 24, Issue 12, December 2017, Pages 1501-1509

Original Investigatior

Categorization of Liver Metastases Into
Primary Cancer Sites: Initial Results

Avi Ben-Cohen MSc ® & &, Eyal Klang MD 5, Idit Diamant MSc 2, Noa Rozendorn BSc b, Stephen P
Raskin MD ®, Eli Konen MD ¥, Michal Marianne Amitai MD b, Hayit Greenspan PhD ?

Melanoma CRC Pancreas Breast
(T MR ST - 3 =%

Portal
Phase

In @ multicategory classification task, into the four different
primary sites, the first expert achieved a classification accuracy of 42% and
the second expert 33%

Top-1 Top-2 Top-3
Features ACC ACC ACC
Texture 0.56 0.66 0.90
CNN low-layer selection 0.50 0.66 0.90
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Academic Radiology

Volume 24, Issue 12, December 2017, Pages 1501-1509

RADIOLOGY

Original Investigation

CT Image-based Decision Support System for
Categorization of Liver Metastases Into
Primary Cancer Sites: Initial Results

Avi Ben-Cohen MSc * 2 &, Eyal Klang MD ®, dit Diamant MSc *, Noa Rozendorn BSc ®, Stephen P

Raskin MD ®, Eli Konen MD ®, Michal Marianne Amitai MD ®, Hayit Greenspan PhD ?

CRC

Portal
Phase

NC

Melanoma
TR

Panci

50 lesion cases taken from 29 patients were selected for the development set; 142
lesion from 71 patients were chosen for the evaluation set.

The data include various liver metastatic lesions derived from different primary sites
showing melanoma, breast cancer, colorectal cancer, and pancreatic cancer

For each lesion, two 2D images (portal phase and non contrast CT) were available

In a multicategory classification task, into the four different
primary sites, the first expert achieved a classification accuracy of 42% and

the second expert 33%

TABLE 4. Top-1, Top-2, and Top-3 Accuracy Results
Comparison on the Evaluation Set Using Texture Features,
Features Extracted From the CNN, and Age and Gender

Information

Top-1 Top-2 Top-3
Features ACC ACC ACC
Age and gender 0.54 0.76 0.94
Texture, age, and gender 0.61 0.81 0.94
CNN low selection and 0.56 0.83 0.99

age and gender




Radiomics-Response Prediction

Contents lists available at ScienceDirect

RADIOLOGY

European Journal of Radiology e Radiomics in early rgsponse:
foumal homepaga: vy slseviercomocatagrad = AUC 0.707 per-lesion, AUC 0.720 per-
= patient
Radiomics diagnosed histopathological growth pattern in prediction of e

response and 1-year progression free survival for colorectal liver metastases
patients treated with bevacizumab containing chemotherapy

Radiomics 1-year PFS:
= Was the only indipendent predictor of 1-
year PFS

= 119 affected by liver metastases in CRC

treated with bevacizumab

Univariable and Multivariable Cox Proportional Hazards Models for 1-Year
Progression-Free Survival.

= Manually 3D segmentation on non-

contrast CT p h ase Covariate Univariable analysis Multivariable analysis
HR (95% CI) P HR (95% CI) P
) ] ] ] ] value value
- R.adlomlcs qu el designed to identify [m_HGP 5339 So0L 030e mm]
histophatologic growth pattern (0.176-0.655) (0.195-0.804)
ER_PVP 0.561 0.050
(0.314-1.001)
= To pred|ct ear|y response Liver resection 0.247 0.053
(0.060-0.018)
Morphologic 0.268 0.011 0.676 0.214
n To p red | ct 1_ye ar P FS response (0.268-0.846) (0.365-1.253)

Wei S |l etal., EJR 2021




Radiomics-Response Prediction

LIVER METS

JNCI] Natl Cancer Inst (2020) 112(9): djaa017

doi: 10.1093/jnci/djaa017
First published online February 4, 2020

OXFORD Article

Radiomics Response Signature for Identification of Metastatic
Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway

Anti-EGFR treatment No anti-EGFR treatment
FOLFIRI + cetuximab FOLFIRI only
mCRC mCRC
Analysis CRC-FCH? CRC-FCS® CRC-FH2 CRC-F
Reference standard 0s 0s 0s 0s
No. patients
Total 116 186 129 236
Training 78 124 78 159
Sensitive 48 71 42 85
Resistant 30 53 36 74
Validation 38 62 51 78
42
36

667 metast Radiomics-derived support tools could give clinicians an
early prediction of the success of treatment with FC using
Segmentati conventional standard-of-care CT scans

= 3499 featulc

To predict tumor sensitivities to CHT

Dercle L et al., INCI 2020

Random Forest

Shape SI4
LoG Z Entropy
GTDM Contrast
LoG X Entropy
Performance
(" Tumor sensitivity 0S >17.7 mo 0S >17.7 mo 0S >17.7 mo 0S >17.7 mo )
AUC, training 0.83(95% CI=0.75t00.95)  0.84(95% CI=076t00.89)  0.75(95% CI=0.63t0 0.85)  0.75 (95% CI = 0.67 to 0.82)
\_ AUG, validation 0.80 (95% CI = 0.69100.94)  0.72(95% CI=0.59t00.83)  0.59 (95% CI = 0.44 to 0.72) 0.5 (95% CI = 0.43 to 0.66)
Association with OS )
Cox regression
Hazard ratio 44.3(95% CI = 6.4 to 307.7) 6.5 (95% CI = 1.8 to 23.6) 1.9 (95% CI = 0.4 to 8.4) 0.96 (95% CI = 0.2 to 4.3)
Death 31/38 53/62 42/51 69/78
\_ P .0001 .005 43 96 )

W

-



Radiomics-Response Prediction
diagnostics @\py

Article
Assessment of Response to Chemotherapy in Pancreatic Cancer
with Liver Metastasis: CT Texture as a Predictive Biomarker

AIM: To test CT texture of metastatic in
comparison with RECIST 1.1, Choi and
modified Choi criteria in evaluating treatment
and determining time to progression (TTP) in
metastatic PDAC

5. Conclusions

Our findings indicated that the existing assessment criteria, including RECIST 1.1,
Choi and modified Choi, were not sufficient for the evaluation of tumor response to
treatment. We found that the percentage change in texture SD of liver metastatic lesions
derived from contrast-enhanced CT texture analysis, might better predict tumor response
and TTP in pancreatic patients with liver metastasis undergoing chemotherapy. Therefore,
CT texture was proved to be an effective assessment tool and biomarker that predicted
tumor response and TTP in a manner that was superior to traditional response criteria
based on enhancement change, size change, or both.

In this paper, we assess changes in CT texture of metastatic

Cox regression analysis showed:

Proportion of patients without disease QO
progression

RECIST Criteria

Proportion of patients without disease 7
progression
° o c i

CHOI Criteria

Time (days)

600
Time (days)

Proportion of patients without disease (o]
progression

Modified CHOI Criteria
~PR
SD, PD

P=0.53

0

prog

Proportion of patients without disease O
rogression

% change in fine
texture (SD)_Tranining
—>-24%

<-24%

P<0.05

600
Time (days)

600
Time (days)

« percentage change in SD was an independent

predictor of TTP (p = 0.016)

« confirmed in the validation cohort (p = 0.019)

Cheng et al., Diagnostics 2021

liver lecions after treatment with chemotheranv in natients
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AUC [95%C1) P cfNRI+ dNRi P DI P PRV P NPV P
CT-based peritumoral radiomics signatures @ & empmea E e 2 AT a e
. - %’&c&uﬁ' RO 062 P45, 079) <00 ~047 032 <00 022 <001 063 <00 0.65 092
to predict early recurrence in hepatocellular e 01D40%) <0 -0  -041 002 00 00 08  <a0l 0S5 03

carcinoma after curative tumor resection or
ablation

Quan-yuan Shar'®, Hang-tong Hu'®, Shi-ting Feng?, Zhen-peng Peng?, Shu-ling Chen', Qian Zhou?, Xin Li*,
Xiao-yan Xie' @, Ming-de Lu'”®, Wei Wang""® and Ming Kuang'~"

ROC curve of Validation Cohort

10

* A prediction model based on peritumoral radiomics signatures
from pretreatment CT images was constructed to predict early
recurrence of HCC after curative treatment.

* 156 patients randomly divided into training cohort (109 patients)
and validation cohort (47 patients).

* Early recurrence was defined as the presence of new intrahepatic
lesions or metastasis with typical imaging features of HCC, or
atypical findings with histopathological confirmation within 2
years after curative resection or ablation of HCC.

* Aregion of interest (ROI) was manually delineated around the
lesion for tumoral radiomics (T-RO) feature extraction, and
another ROl was outlined with an additional 2 cm peritumoral
area for peritumoral radiomics (PT-RO) feature extraction.

* The T-RO and PT-RO models were constructed using LASSO logistic .
regression and compared to the peritumoral Enhancement (PT-E) 10 08 06 04 0.2 00
detected by a radiologist. Specificity

08
N

06

Sensitivity

04

umor. A region of interest (ROI) was manually delineated around the lesion for tumoral radiomics (T-RO) feature
extraction, and another ROl was outlined with an additional 2 cm peritumoral area for peritumoral radiomics (PT-
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Prediction for early recurrence of
intrahepatic mass-forming
cholangiocarcinoma: quantitative magnetic
resonance imaging combined with
prognostlc |mmunoh|stochem|ca| markers

First author [Ref.] Year Images Methods Subjects, Purpose AUC e B R S e
n £ IVYSPRING
B o T hevanostics
Matake et al. [104] 2006 CECT ANN 120 To evaluate the performance of ANN for differential diagnosis of hepatic 0.961 e e

A radiomics approach based on support vector machine
using MR images for preoperative lymph node status
evaluation in intrahepatic cholangiocarcinoma

masses, including CCA

Logeswaran [25] 2009 MRCP MLP 648 To differentiate images with CCA from those without - L, T Yo W g Wi Wi Won, o L1 g W 5
& rontiers ORIGIN,
Pattanapairoj et al. [26] 2015 No C4.5, ANN 85 To improve the diagnostic power of serum markers using C4.5 and ANN - & R Gnesosy s
Sadot et al. [27] 2015 CECT Multiple linear 56 To investigate associations between imaging features of CCA and texture -
ssi analysis
reglie%slon anatysts Novel Nomogram for Preoperative
ANAYS1S Prediction of Early Recurrence in
. . . Intrahepatic Cholangiocarcinoma

Liang et al. [28] 2018 CECT LASSO 209 To develop a novel radiomics nomogram for predicting ER of ICC 0.90 R
Shao et al. [105] 2018 No BP-ANN 288 To predict early occlusion of bilateral plastic stent placement for inoperable ~ 0.9648 .

HCC ‘.@'PLOS|°NE

6 etal. [106] 2019 CECT LASSO 103 To develop a radiomics model for predicting LNM of ICC and to determine 0.924) R

its prognostic value Cholangiocarcinoma: Correlation between
Jietal. [107] 2019 CECT LASSO 247 To evaluate a radiomics model for predicting LNM in BTCs and to 0.81 Molecular Profiling and Imaging Phenotypes

determine its prognostic value i ety Dhngones. Ronstt. Dot T-poter Kingran. Woms "

R.Jarnagin'*
Xuetal. [108] 2019 MRI  SVM 148 To develop a prediction model for preoperative LNM in ICC patients 0.870 I
European Radiology (2019) 29:3725-3735
https://doi.org/10.1007/500330-019-06142-7

Peng et al. [109] 2019  US LASSO, SVM 128 To develop radiomics signatures based on US to assess the biological 0.930 HEPATOBILIARY-PANCREAS

®

Check for
updates

behaviors of ICC

A radiomics approach to predict lymph node metastasis and clinical

Yang et al. [110] 2020 MRI Random forest 100 To evaluate diagnostic performance of radiomics models of MRI in the 0.90 outcome of intrahepatic cholangiocarcinoma
\ detection of DD and LNM of ECC / I ; + yiShena Liu® - FebYun Wa® 2 e Xia?
Gu-Wei Ji*  Fei-Peng Zhu le{-Dong Zh.ang . Xl-Shevg Liu® « Fei-Yun Wu*® - Ke Wang "“ - Yong-Xiang Xia '~ -

B Yao-Dong Zhang'? - Wang-Jie Jiang " - Xiang-Cheng Li"*? - Xue-Hao Wang '?
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Radiomics and CCA

Table 1  Baseline clinical characteristics of the training and validation cohort

Variables Levels Total Training Validation p value
European Radiology n 203 142 61
https://dol.org/10.1007/500330-020.07250-5 Age, years 58.00 [51.00, 67.00] 57.00 [50.00, 66.00] 59.00 [54.00, 68.00] 0.169
TR Gender Male 105 (51.7) 71 (50.0) 34(55.7) 0.551
™ Femule 98 (48.3) 71 (50.0) 27 (44.3)
S History of previous cholelithiasis ~ No 174 (85.7) 120 (84.5) 54 (88.5) 0.595
- Yes 29 (14.3) 22(15.5) 7(11.5)
Radiomics using CT images for preoperative prediction of futile Liver cirrhosis o 0o R oo 1000
resection in intrahepatic cholangiocarcinoma History of previous liver surgery ~ No 192 (94.6) 134 (94.4) 58(95.1) 1.000
—— Yes 11 (5.4) 8(5.6) 3(4.9)
T L3 o P ’ AT 5 e A CT reports
Hongpeng Chu " - Zelong Liu® - Wen Liang” - Qian Zhou™ - Ying Zhang " - Kai Lei " - Mimi Tang™ - Yiheng Cao" - Tumor size, mm, mean + SD 63.4+272 64.60+27.56 60.61+26.19 0.338
Shuling Chen* - Sui Peng™” - Ming Kuang Number of tumor 0* 2(1.0) 1(0.7) 1(1.6) 0.811
d 1 160 (78.8) 114 (80.3) 46 (75.4)
ROI segmentation Radiomics feature extraction Radiomics feature selection Analysis 2 13 (6.4) 8 (5.6) 5(8.2)
3 3(1.5) 2(1.4) 1(1.6)
y >3 25(12.3) 17 (12.0) 8 (13.1)
- Tumor boundary Not sure 32(15.8) 18 (12.7) 14(23.0) 0.164
Bnnn clear 22 (10.8) 15 (10.6) 7(11.5)
PSRRI [<[rls o[ obscure 149 (73.4) 109 (76.8) 40 (65.6)
EEETE Ll T ) Bile duct stone No 148 (72.9) 103 (72.5) 45(73.8) 0.993
=R - i R —— Yes 55 (27.1) 39 (27.5) 16 (26.2)
i | = | Bile duct dilatation No 104 (51.2) 70 (49.3) 34(55.7) 0.491
i1 Yes 99 (48.8) 72 (50.7) 27 (44.3)
‘- . Bile duct invasion No 178 (87.7) 124 (87.3) 54 (88.5) 0.995
P Yes 25(12.3) 18(12.7) 7(11.5)
Lymph node metastasis No 119 (58.6) 82(57.7) 37 (60.7) 0.818
Yes 84 (41.4) 60 (42.3) 24(39.3)
Adjacent tissue invasion No 193 (95.1) 135 (95.1) 58(95.1) 1.000
Yes 10 (4.9) 7(4.9) 3(4.9)
Table 2 Performance of three prediction models: the clinical model, the radiomics model, and the combined model Ascites ﬁg\ 12.’[’ {?)7;-0) 132 {?(gfj (’? [(?i'f') 0.671
. . - Cirthosis No 192 (94.6) 134 (94.4) 58(95.1) 1.000
Group Radiomics Clinical Combined model Yes 11 (5.4) 8 (5.6) 3(4.9)
Splenomegaly No 180 (88.7) 124 (87.3) 56 (91.8) 0.495
AUC (95% CT) trainin 0.838 (0.751. 0.924) 0.716 (0.582, 0.849) 0.864 (0.781, 0.947) es 23 (11.3) 18(2.7) 3(8.2)
g ) ARATRD ) AR ; TR Time between CT and surgery 6 (4.00, 10.00) 7 [4.00, 10.75] 6 [3.00, 8.00] 0.194
Validation 0.804 (0.697, 0.912) 0.59 (0.415, 0.765) 0.8 (0.69, 0.909) Laboratory data
. HbsAg Positive 160 (78.8) 117 (82.4) 43 (70.5) 0.086
Accuracy (95% CI) training 0.739 (0.659, 0.809) 0.683 (0.6, 0.759) 0.817 (0.743, 0.877) Negative 43 (21.2) 25(17.6) 18 (29.5)
- WBC, 1079 /L 733 [5.86,9.14] 7.41[6.00, 9.12] 7.18 [5.40, 9.16] 0.458
Validation 0.787 (0.663, 0.881) 0.59 (0.457,0.714) 0.754 (0.627, 0.855) NLR 262 [1.87. 3.84] 272 [203. 407] 249 [1.67. 3.40] 0,085
Sensitivity (95% CI) training 0.85 (0.621, 0.968) 0.65 (0.408, 0.846) 0.85 (0.621, 0.968) Hb, g/L 40.10 [36.65, 42.90] 39.95 [36.50, 42.57] 40.50 [37.40, 43.30] 0.462
o Total bilirubin, ymol/L 12.10 [9.30, 17.00] 12.15 [9.40, 16.68] 12.10 [9.20, 18.80] 0.953
Validation 0.846 (0.546, 0.981) 0.692 (0.386, 0.909) 0.923 (0.64, 0.998) Direct bilirubin, pmol/L 3.00 [2.10, 4.70] 2.90 [2.00, 4.59] 3.50 [2.20, 5.00] 0.193
Specificity (95% CI) training 0.721 (0.633, 0.799) 0.689 (0.598, 0.769) 0.811 (0.731,0.877) ALT, UL 2500 [16.50, 47.50] 2400[15.25,43.50]  28.00[19.40.60.00]  0.081
o AST, UL 28.00 [23.90, 42.35] 28.00 [22.25, 42.75] 29.00 [25.00, 41.30] 0.541
Validation 0.771 (0.627, 0.88) 0.562 (0.412, 0.705) 0.708 (0.559, 0.83) PT,s 11.90 [11.40, 12.60] 11.90 [11.40, 12.80] 11.80 [11.40, 12.40] 0.275
. AFP, pg/L 349 [2.42, 5.63 3.20[2.34,5.39 3.98 [2.71,7.21 0.038
NPV (95% CT) training 0.967 (0.907, 0.993) 0.923 (0.848, 0.969) 0.971 (0.916, 0.994) CEa ey B |[1.95. 9_83]' e |[1.x|. w‘og] fou [[2_03_ 8'45]] o
Validation 0.949 (0.827, 0.994) 0.871 (0.702, 0.964) 0.971 (0.851, 0.999) 5CA19 9. U/mL 64.57 [14.03, 1020.23] 78.39 [14.46, 1009.90]  40.86 [13.81, 1779.80]  0.631
urgical outcome
PPV (95% CI) training 0.333 (0.208, 0.479) 0.255 (0.143, 0.396) 0.425 (0.27, 0.591) Futile No 170 (83.7) 122 (85.9) 48 (78.7) 0.201
Validation 0.5 (0.282, 0.718) 0.3 (0.147, 0.494) 0.462 (0.266, 0.666) Yes 33063 2004.H 1B@eLy
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Al and Liver Cancer

Detection/Diagnosis of focal liver lesions

Tk | Twe | Acuay | Ref

Predicting the primary origin of liver metastasis Radiomics and Deep learning based on CT  56%
Detecting liver new tumors Deep learning based on CT 86%
Detecting focal liver lesions Deep learning based on ultrasound 89%
Detecting liver tumors Deep learning based on MRI 90%
Detecting and distinguishing different focal liver lesions.  Deep learning based on ultrasound 97.2%
Detecting metastatic liver malignancy Deep learning based on PET/CT 90.5%
Evaluating focal liver lesion Deep learning based on MRI 92%
Evaluating focal liver lesion Deep learning based on CT 84%

Measurement of liver fibrosis Diagnosis and prognosis of NAFLD
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Pred}cﬁon of disease pwgre;sion

/' Focal liver lesion detection

Focal liver lesion evaluation

Ben Cohen A, 2017
Vivanti R, 2017;
Tiyarattanachai T, 2021
Kim J, 2020

Hassan TM, 2017
Preis O, 2011

Hamm C, 2019

Yasaka K, 2018




CLINICAL IMPACT ON LIVER IMAGING

DIFFUSE LIVER DISEASES

* Non-contrast-enhanced CT texture analysis predicted non-
alcoholic steatohepatitis

« Deep learning system allows for accurate staging of liver
fibrosis by using enhanced CT images

« Diagnose clinically significant portal hypertension and
predict esophageal varices severity

Liu F. et al. E. bio. Medicine 2018
Wan s. et al. Ann. Transl. Med. 2020




Al and Liver Fibrosis

Measurement of liver fibrosis

Tyne AUC Advanced AUC significant
P fibrosis fibrosis

Deep learning based on contrast enhanced MRI 0.84 0.84 0.85 Yasaka K, 2017
Deep learning based on contrast enhanced CT 0.95 0.97 0.96 Choi K J, 2018
Deep learning based on shear wave elastography 0.97 0.98 0.85 Wang K, 2019
Deep learning based on ultrasound 0.90 - 0.90 Lee J H, 2019
Radiomics based on contrast enhanced MRI 0.87 0.88 0.91 Park HJ, 2019

O+ Q-Box™
Mean 26.6kPa
Min pER
Max 30.8kPa
SD 1.2kPa
Diam 20.0mm

if 2\
\ —_— - =

Prediction of disease progression Diagnosis of focal liver lesions




ORIGINAL RESEARCH - GASTROINTESTINAL IMAGING

Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease ~ Performance

Input: RF without TGC

and Quantification of Liver Fat with Radiofrequency e o
. . . - SC 1tivi
Ultrasound Data Using One-dimensional Convolutional sp:j.tﬁl::z
Neural Networks PPV
NPV
Aiguo Han, PhD + Michal Byra, PhD + Elbamy Heba, MD' » Michael P Andre, PhD o Jolm W. Erdman, Ji; PhD * A
Rohit Loomba, MD, MHSe * Claude B. Sirlin, MD * William D. O Byien, Jr, PhD ccuracy

97 (90, 100) [68/70])
94 (79, 99) (30/32]
97 (90, 99) (68/70]
94 (79, 98) [30/32]
96 (90, 99) [98/102]

Raw radiofrequency ultrasound contain more information than do gray-
scale B-mode images because information is lost or altered when B-mode
images are generated from the raw data

A one-dimensional CNNs for NAFLD diagnosis and liver fat quantification
was developed, using MRI PDFF as the reference standard.

204 partecipants were prospectively enrolled, equally divided into training
(n =102) and test (n = 102) groups by using stratified randomization NAFLD
was defined as MRI PDFF of 5% or greater.

Two one-dimensional CNN algorithms were developed: a binary classifier
and a fat fraction estimator. For each RF signal input, the classifier output
an NAFLD classification score between 0 and 1, and the fat fraction
estimator output the predicted fat fraction as a percentage.
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Figure 3. ROC curves of the models for predicting the stage
BJR of liver fibrosis and the grade of inflammatory activity

org/101259,/bjr.20220512

Er‘eﬁi;ez%zz | ﬁf (a), (b) ROC curves for models built based on radiomics fea-
tures of 7;W, T-oWFS, and T{W&7T,WFS images for discrimi-
Cite this article as: nating fibrosis stage F = Tand F = 2; (c), (d) ROC curves for
il e models built based on radiomics features of 7;W, 7oWFS, and ¢ staging liver fibrosis

TIW&T-WFS images for discriminating inflammatory activity
grade A = T1and A = 2. ROC, receiver operating characteristic.
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Methods:
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(training set
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Results: The
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GERUSSI ET AL

FIGURE 3 Transplant-free survival

of patients by cluster membership in the
validation set. The survival function within
each cluster of patients with primary
biliary cholangitis in the validation set was
estimated using the Kaplan-Meier method
and compared using the log-rank test

Conclusions: Unsupervised ML identified four novel groups of PBC
patients with different phenotypes and prognosis and highlighted subtle
variations of albumin within the normal range.

Number at risk

© 225 159 84 32

® 333 223 119 38

n 393 287 159 64

118 70 3 12

0 5 10 15

Time (years)
Serum bilirubin at Serum albumin at Serum ALP at
Patient ID diagnosis (x ULN) diagnosis (x LLN) diagnosis (x ULN)

DD 1.00 1.11 7.45
LF 0.73 1.23 1.09
PV 1.32 1.11 2.19

Abbreviations: LLN, lower limit of normal; ULN, upper limit of normal.

TABLE 3 Features at diagnosis of three
newly diagnosed patients with primary
biliary cholangitis
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